16 research outputs found

    Bending and Breaking of Stripes in a Charge-Ordered Manganite

    Get PDF
    In complex electronic materials, coupling between electrons and the atomic lattice gives rise to remarkable phenomena, including colossal magnetoresistance and metal-insulator transitions. Charge-ordered phases are a prototypical manifestation of charge-lattice coupling, in which the atomic lattice undergoes periodic lattice displacements (PLDs). Here we directly map the picometer scale PLDs at individual atomic columns in the room temperature charge-ordered manganite Bi0.35_{0.35}Sr0.18_{0.18}Ca0.47_{0.47}MnO3_3 using aberration corrected scanning transmission electron microscopy (STEM). We measure transverse, displacive lattice modulations of the cations, distinct from existing manganite charge-order models. We reveal locally unidirectional striped PLD domains as small as ∼\sim5 nm, despite apparent bidirectionality over larger length scales. Further, we observe a direct link between disorder in one lattice modulation, in the form of dislocations and shear deformations, and nascent order in the perpendicular modulation. By examining the defects and symmetries of PLDs near the charge-ordering phase transition, we directly visualize the local competition underpinning spatial heterogeneity in a complex oxide.Comment: Main text: 20 pages, 4 figures. Supplemental Information: 27 pages, 14 figure

    Commensurate Stripes and Phase Coherence in Manganites Revealed with Cryogenic Scanning Transmission Electron Microscopy

    Get PDF
    Incommensurate charge order in hole-doped oxides is intertwined with exotic phenomena such as colossal magnetoresistance, high-temperature superconductivity, and electronic nematicity. Here, we map at atomic resolution the nature of incommensurate order in a manganite using scanning transmission electron microscopy at room temperature and cryogenic temperature (∼\sim 93K). In diffraction, the ordering wavevector changes upon cooling, a behavior typically associated with incommensurate order. However, using real space measurements, we discover that the underlying ordered state is lattice-commensurate at both temperatures. The cations undergo picometer-scale (∼\sim 6-11 pm) transverse displacements, which suggests that charge-lattice coupling is strong and hence favors lattice-locked modulations. We further unearth phase inhomogeneity in the periodic lattice displacements at room temperature, and emergent phase coherence at 93K. Such local phase variations not only govern the long range correlations of the charge-ordered state, but also results in apparent shifts in the ordering wavevector. These atomically-resolved observations underscore the importance of lattice coupling and provide a microscopic explanation for putative "incommensurate" order in hole-doped oxides

    Multiple ferroic orders and toroidal magnetoelectricity in the chiral magnet BaCoSiO4

    No full text
    Discovering ferroic phase transitions and their consequential physical properties is at the core of condensed matter science due to rich physics and tremendous technological promises. BaCoSiO4, a chiral antiferromagnet, belongs to the tetrahedron-based chiral system, and exhibits diverse ferroic orders with coexisting chirality, polarity, trimerization, ferrorotational distortions, and magnetism. However, their mutual couplings remain to be explored. In this work, we used a comprehensive combination of several experimental tools - in situ x-ray, transmission electron microscopy, magnetization, and magnetoelectric measurements of single-crystalline BaCoSiO4 - to investigate hierarchical phase transitions, their microscopic domain structures, and the resulting magnetoelectricity. We found that two different structural chiralities develop through distinct processes: global homochirality and local heterochirality induced by the ferrorotational distortions on top of existing polarization. In addition, magnetic chirality, with the simultaneous presence of net magnetic moment and magnetic toroidal moment, develops below 3.2 K due to the global chirality, which leads to magnetic field tunable toroidal magnetoelectricity. Thus, BaCoSiO4 exhibits uniquely all four types of ferroic orders and provides an avenue to explore, for example, tunable or dynamic coupling of multiple ferroic degrees of freedom.11Nsciescopu
    corecore